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Ballinger MA, Schwartz C, Andrews MT. Enhanced oxidative
capacity of ground squirrel brain mitochondria during hibernation. Am
J Physiol Regul Integr Comp Physiol 312: R301–R310, 2017. First
published January 11, 2017; doi:10.1152/ajpregu.00314.2016.—Dur-
ing hibernation, thirteen-lined ground squirrels (Ictidomys tridecem-
lineatus) regularly cycle between bouts of torpor and interbout arousal
(IBA). Most of the brain is electrically quiescent during torpor but
regains activity quickly upon arousal to IBA, resulting in extreme
oscillations in energy demand during hibernation. We predicted in-
creased functional capacity of brain mitochondria during hibernation
compared with spring to accommodate the variable energy demands
of hibernation. To address this hypothesis, we examined mitochon-
drial bioenergetics in the ground squirrel brain across three time
points: spring (SP), torpor (TOR), and IBA. Respiration rates of
isolated brain mitochondria through complex I of the electron trans-
port chain were more than twofold higher in TOR and IBA than in SP
(P � 0.05). We also found a 10% increase in membrane potential
between hibernation and spring (P � 0.05), and that proton leak was
lower in TOR and IBA than in SP. Finally, there was a 30% increase
in calcium loading in SP brain mitochondria compared with TOR and
IBA (P � 0.01). To analyze brain mitochondrial abundance between
spring and hibernation, we measured the ratio of copy number in a
mitochondrial gene (ND1) vs. a nuclear gene (B2M) in frozen cerebral
cortex samples. No significant differences were observed in DNA
copies between SP and IBA. These data show that brain mitochondrial
bioenergetics are not static across the year and suggest that brain
mitochondria function more effectively during the hibernation season,
allowing for rapid production of energy to meet demand when
extreme physiological changes are occurring.

mitochondria; brain; hibernation; proton leak; calcium uptake; thir-
teen-lined ground squirrel

HIBERNATION is an energy-conserving strategy employed by
some mammals to withstand unfavorable environmental con-
ditions (69, 93). For example, during hibernation, thirteen-
lined ground squirrels (Ictidomys tridecemlineatus) enter a
state of torpor in which their heart rate drops below 5% of their
normothermic rate, they maintain a core body temperature as
low as 5°C, and their cerebral blood flow is reduced by 90% (2,
38, 96). However, this state of reduced metabolism is period-
ically interrupted throughout the season by interbout arousals
(IBAs), during which the ground squirrels briefly return to a
physiological state typical of homeothermic mammals and
nonhibernating periods for this species (22).

The processes of hibernation are regulated by various re-
gions of the brain (reviewed in Ref. 31), and some regions stay
active year round in thirteen-lined ground squirrels (12). For
example, although overall glucose uptake by torpid ground
squirrel brain is reduced to 1–2% of active control values (38),
the relative utilization of glucose by the suprachiasmatic nu-
cleus (SCN), an important regulator of the hibernation cir-
cuitry, remains higher than that of most other brain regions
during deep torpor (55). This necessitates at least a low-
baseline energy demand during torpor. Additionally, ground
squirrel hypothalamus and brain cortex undergo changes in
glucose uptake during transitions between torpor and IBA (54).
Similarly, c-Fos expression, which is used as a marker of
neuronal activation, was elevated during torpor in the SCN,
again suggesting at least some energy demand during torpor
(12). However, reducing or eliminating function in nonvital
brain areas serves to conserve energy (27). Cortical electroen-
cephalogram recordings during torpor indicate that there is
little to no activity occurring during this time (108). A previous
finding that synaptic connections are significantly reduced in
some areas of the forebrain during torpor also supports this
observation (106). Similarly, changes in dendritic spines and
other synaptic structures resulting in reduced connectivity have
been shown in torpor as well (70, 85, 86, 105). To illustrate the
magnitude of this disconnection, it has been reported that entry
into torpor is associated with a 50–60% loss of synapses in the
golden-mantled ground squirrel (Callospermophilus lateralis)
(106). Thus, while some brain regions appear to remain func-
tional during torpor, much of the brain is quiescent.

Importantly, synaptic connectivity and electrical activity in
the brain are regained by IBA (106, 108), indicating that
extensive synaptic restructuring is occurring during arousal.
Studies in golden hamsters indicate that brain energy metabo-
lism is maintained during arousal (67), suggesting that the
brain is functioning during arousal as it would normally during
homeothermy. However, synaptic plasticity and maintenance
require extensive ATP production (7, 46), making arousal and
IBA energetically costly periods (106). Additionally, because
of the short duration of arousal (45), synaptic plasticity also has
to occur very rapidly. Therefore, a major shift in energy
demand occurs between torpor and IBA, a physiological tran-
sition that occurs many times throughout hibernation.

Overall, the exact mechanisms by which hibernators regu-
late their metabolism during hibernation are not fully under-
stood. Mitochondria are a logical focal point to investigate
metabolic regulation in hibernators, as they are the primary site
for oxygen consumption and have considerable control over
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energy-demanding processes (reviewed in Refs. 89 and 101).
Therefore, mitochondria are integral to orchestrating the ex-
treme changes in energy demand in the brain during hiberna-
tion. However, most of the mitochondrial metabolic studies
have been done in ground squirrel liver, which shows signifi-
cant suppression during torpor in thirteen-lined ground squir-
rels (reviewed in Ref. 101; Supplemental Table S1 and Refs. 3,
16, 19, 20, 23, 25, 26, 37, 40, 51, 53, 83, 99). Investigation of
other tissues, like the brain, may provide insight into the
overall metabolic mechanisms of ground squirrels and hiber-
nators in general.

To withstand numerous shifts in energy demand during the
hibernation season, we predict that unlike the liver, brain
mitochondrial metabolism is not actively suppressed during
hibernation compared with spring. There has only been one
study investigating brain mitochondria in a hibernator, which
found no difference in mitochondrial respiration rates in cere-
bral cortex between torpor and IBA (39). However, this study
only investigated brain mitochondrial metabolism during hi-
bernation, and no seasonal consideration was taken. By mea-
suring mitochondrial metabolism throughout the year, our goal
was to gain insight into the mechanisms and adaptations that
the ground squirrel brain employs to maintain function during
extreme physiological challenges and shifts in energy demand.
Therefore, the aim of this study was to investigate the mito-
chondrial metabolism of the thirteen-lined ground squirrel
brain both during and outside of the hibernation season.

MATERIALS AND METHODS

Animal capture and care. All procedures were approved by the
University of Minnesota Institutional Animal Care and Use Commit-
tee (IACUC; protocol no. 1103A97712). Wild thirteen-lined ground
squirrels, Ictidomys tridecemlineatus, were live-trapped on private
property, with permission, near Paynesville, Minnesota, in 2013 and
2014. After capture, animals were housed in the American Associa-
tion for Accreditation of Laboratory Animal Care-accredited animal
care facility located in the University of Minnesota Duluth School of
Medicine. Squirrels were housed individually in plastic top-load rat
cages filled with aspen shavings. The squirrels were kept at room
temperature in a 12:12-h light-dark cycle at 23°C and fed standard
rodent chow (Purina, no. 5001) and water ad libitum. During the
hibernation season (around November to March), the squirrels were
moved into an artificial hibernation chamber and kept in constant
darkness at 5–7°C with no food provided, but water was provided ad
libitum.

Experimental collection points. An equal number of males and
females were euthanized at each collection point: torpor (TOR), IBA,
and post-hibernation (spring active, SP). A complete synopsis of the
experimental collection points can be found in Schwartz et al. (96).
Briefly, during hibernation, animals were monitored daily using the
sawdust method (84). Animals used for the torpor sample point were
around day 4 into a torpor bout and had shown no signs of arousal.
Torpid state was verified at sacrifice by rectal body temperature
(6–8°C). All animals used for the IBA sample point aroused sponta-
neously, were observed as awake and active, and were torpid the
previous day. All IBA collection point animals had a normothermic
body temperature (35–37°C), as verified by rectal measurement at the
time of death. Animals at the hibernation time point (torpor and IBA)
were euthanized in December, January, and February, when average
torpor bout length is longest (96). The spring-active time point
provides an opportunity to examine the period of recovery after the
completion of an entire hibernation season. Spring-active animals
were sampled in April and May. April animals had undergone hiber-

nation within the animal care facility, while May animals were
collected from the field and presumably had undergone hibernation in
the field.

All animals were deeply anesthetized with 5% isoflurane until
unresponsive to a toe pinch and then euthanized by decapitation
before tissue collection. Although torpid ground squirrels have a
reduced respiratory rate, this experimental group was still exposed to
the same anesthesia and toe pinch protocol, as per the University of
Minnesota Duluth IACUC procedural approval. Isoflurane has been
shown to have an effect on mitochondrial metabolism in mice treated
with isoflurane for 3–6 h (111); however, we expect there to be no
effect of our isoflurane treatment on brain mitochondria, as our
squirrels were briefly exposed to isoflurane (�10 min). Whole brain
was removed from the skull, and the meninges and blood vessels
surrounding the brain were removed. The brain was immediately
placed in ice-cold mitochondrial isolation buffer (MIB; 250 mM
sucrose, 1 mM EGTA, 5 mM HEPES, pH ~7.2–7.4).

Mitochondrial isolation. Mitochondrial isolation was performed on
whole brains via differential centrifugation, adapted and modified
from established protocols (63, 100). The brain was minced on ice and
homogenized with 10 passes in 30 ml of ice-cold mitochondrial
isolation buffer (MIB; 250 mM sucrose, 1 mM EGTA, 5 mM HEPES,
pH ~7.2–7.4) � 0.1% fatty acid-free BSA using a rotating loose-
fitting Teflon pestle. The homogenate was filtered through three layers
of sterile gauze and centrifuged at 1,000 g for 10 min at 4°C. Floating
lipid was aspirated from the supernatant, which was transferred to a
new prechilled centrifuge tube and centrifuged at 500 g for 10 min at
4°C. Any additional floating lipid was aspirated from the supernatant,
which was transferred to a new prechilled centrifuge tube and centri-
fuged at 10,500 g for 10 min at 4°C. The supernatant was decanted,
and any lipid adhering to the tubes was carefully removed using
KimWipes. The pellet was resuspended, including the fluffy synap-
tosomal layer (100), in 30-ml ice-cold wash buffer (WB; 250 mM
sucrose, 5 mM HEPES, pH ~7.2–7.4) � 0.1% fatty acid-free BSA and
centrifuged at 12,000 g for 10 min at 4°C. The supernatant was
decanted, and the mitochondrial pellet was resuspended, including the
fluffy synaptosomal layer (100), in 30 ml of ice-cold WB and
centrifuged at 12,000 g for 10 min at 4°C. The final mitochondrial
pellet was suspended in a minimal volume of WB, transferred to a
prechilled Eppendorf tube, and kept on ice until assayed. The protein
concentrations of isolated mitochondria were determined via BCA
protein assay (Thermo Scientific, no. 23255), according to the man-
ufacturer’s instructions, using BSA as a standard. Mitochondrial
bioenergetics analyses were performed directly after mitochondrial
isolation at 25°C, and each mitochondrial sample was analyzed for in
vitro respiration rates, proton leak, and calcium uptake.

We used 25°C as the assay temperature because it is the temper-
ature experienced midarousal, representing the point during arousal
when brain mitochondria would presumably be at the most risk of
damage and, thus, would need to work as effectively as possible. This
temperature has also been used in previous mitochondrial studies (4,
15, 41, 66, 75), including the brain (72). Finally, measurements were
made at 25°C because, in our experience, it is the optimal in vitro
temperature that yields reliable respiration and bioenergetics measure-
ments, and isolation of brain mitochondria from individual animals
did not provide enough volume to assay more than one temperature
for each experiment.

In vitro mitochondrial respiration. In vitro mitochondrial respira-
tion rates were determined using a Clark-type oxygen electrode
(Hansatech Instruments, King’s Lynn, UK) calibrated to 25°C with
air-saturated dH2O and corrected for local atmospheric pressure.
Unless otherwise stated, all compounds were dissolved in dH2O.

Mitochondria were added in a final concentration of 0.5 mg
protein/ml in 0.5 ml of respiration buffer (135 mM sucrose, 65 mM
KCl, 5 mM KH2PO4, 2.5 mM MgCl2, 5 mM HEPES, pH 7.2–7.4) at
25°C, while undergoing constant stirring (63, 100, 110). Maximal flux
through various segments of the electron transport chain (ETC) were
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determined under phosphorylating (state 3; Ref. 24) conditions with
the addition of saturating ADP (200 nM), using specific substrates and
inhibitors (110). Flux through complex I was measured using 5 mM
glutamate and 5 mM malate (G/M). Succinate (SUC; 5 mM) and
glycerol-3-phosphate (G3P; 5 mM) were added to stimulate flux
through complexes II–IV. G3P activates mitochondrial respiration
through the use of the mitochondrial G3P-dehydrogenase, which fuels
the respiratory chain with electrons independent of complex I. The use
of G3P as a fuel for mitochondrial respiration has been used in
previous brain studies (28, 57). Each substrate (e.g., SUC and G3P)
was assayed in separate experiments, with a total of three respiration
experiments measured for each sample. Rotenone (2 mM, dissolved in
ethanol; an ETC complex I inhibitor) was added to the mitochondrial
suspension before SUC and G3P were introduced to prevent reverse
electron flow. All substrate oxidation rates were allowed to reach both
steady state 3 and steady state 4 (nonphosphorylating) respiration
rates (24, 29). To assess the integrity of the mitochondrial inner
membranes of our isolated mitochondrial fractions, we measured the
respiratory control ratio (RCR). RCR is the ratio between state 3 and
state 4, and it is an indicator of coupling efficiency between substrate
oxidation and ATP synthesis (24, 110).

Membrane potential and proton leak. For the determination of
proton leak kinetics, simultaneous measurements of oxygen consump-
tion and membrane potential (��m) were required (81, 97). A
Clark-type oxygen electrode determined oxygen consumption, while a
tetraphenylphosphonium (TPP�, a lipophilic cation)-sensitive elec-
trode determined membrane potential. Initially, rotenone (2 mM;
dissolved in ethanol) was added to inhibit complex I, and oligomycin
(1 �g/ml, dissolved in ethanol) was added to inhibit ATP synthesis.
As in previous studies (15, 17, 18), we did not use nigericin to
eliminate �pH in our assay. Nigericin can alter mitochondrial respi-
ration rate and reduce mitochondrial respiratory control ratios (5, 41,
58, 88). Mitochondria were added to the chamber at a final concen-
tration of 0.5 mg/ml at 25°C. Mitochondria were incubated in respi-
ration buffer, rotenone, and oligomycin for at least 1 min before TPP�

additions (5, 41). Both a TPP� and a reference electrode (Hansatech
Instruments) were inserted into the oxygen chamber to measure
external [TPP�]. The TPP� electrode was calibrated by making three
additions of TPP� (1 mM); each addition increased external [TPP�]
by 1 �M. After calibration, state 4 respiration was induced by the
addition of 10 mM succinate. The kinetics of proton leak were
determined by inhibiting succinate oxidation stepwise by titrating 0.3
mM malonate until a complete inhibition was obtained, and then
measuring this effect on ��m.

��m was calculated from external [TPP�] using a modified Nernst
equation (Eq. 1), adapted from (5, 58, 97):

��m � �59log� �TPP��added � �TPP��external

�0.001��mg protein���TPP��external�� (1)

[TPP�]external is the concentration of TPP� outside of the mitochon-
dria, and the value 0.001 represents the internal volume of the
mitochondria (taken as 1.1 �l/mg protein) (43). As in previous studies
(17, 18), we did not determine whether mitochondrial matrix volume
changes with metabolic state. Overall, changes in mitochondrial
matrix volume have little effect on membrane potential measurements
when TPP� is used (92).

Calcium loading capacity. For estimation of calcium-loading ca-
pacity, rotenone (2 mM, dissolved in ethanol) and oligomycin (1
�g/ml, dissolved in ethanol) were initially added to inhibit complex I
and ATP synthesis, respectively. Mitochondria were added to the
chamber at a final concentration of 0.5 mg/ml at 25°C. Both a calcium
(filled with 10 mM CaCl2) and a reference electrode (Hansatech
Instruments) were inserted into the oxygen chamber to measure
external [CaCl2]. The CaCl2� electrode was calibrated by sequential
additions of CaCl2 solution (e.g., 20 �M, 20 �M, 40 �M, 80 �M, and
100 �M, total 260 �M). Once calibrated, succinate (10 mM) was

added to stimulate state 4 respiration. The estimation of calcium
loading capacity was determined after calcium loading halted in the
mitochondrial suspension (i.e., mitochondria released calcium back
into the medium; Fig. 1). This Ca2�-induced mitochondrial Ca2�

release indicates the opening of the mitochondrial permeability tran-
sition pore (MPTP), which was confirmed by adding cyclosporin A (1
�M), a specific inhibitor of the MPTP (13), to block the Ca2� release
(114). The calcium-loading capacity is expressed as micromoles of
CaCl2 per milligram of mitochondrial protein (114).

Mitochondrial DNA and nuclear DNA quantification via qPCR. To
infer differences in mitochondrial abundance across seasons, mito-
chondrial DNA (mtDNA) to nuclear DNA (nuDNA) ratio measure-
ments were analyzed between spring and hibernating samples (4, 49).
Briefly, DNA was isolated from frozen cerebral cortex samples from
n � 6 IBA and SP, using QIAmp DNA blood mini kit (no. 51104;
Qiagen, Germantown, MD). Cerebral cortex was chosen for analysis,
as it is the largest region of the brain, thus giving a better represen-
tation of mitochondrial abundance present throughout the whole brain.
Samples were taken from animals with similar seasonal timing (torpor
bout length and total amount of time in hibernation conditions) as the
animals used for functional analyses. Before DNA precipitation,
samples were sonicated to ensure unbiased DNA extraction of nuclear
and mitochondrial DNA (71). Primer sequences from unique mito-
chondrial segments (ND1, NADH dehydrogenase subunit 1) and
single copy nuclear genes (B2M, �-2-macroglobulin) were previously
designed (4) and synthesized by Integrated DNA Technologies (Cor-
alville, IA). Primer sequences were as follows: ND1 (F: 5=-TGTC-
CCAATCTTAGTAGCCATAGCCTT-3=; R:5=-TGCGTCAGCAAA-

500

550

600

650

700

750

800

50

100

150

200

250

300

50 350 650 950 1250 1550 1850

O
xy

ge
n 

(n
m

ol
es

)

Time (seconds)

V
oltage (m

V
)

M
ito

s

C
aC

l 2

C
aC

l 2

C
aC

l 2

C
aC

l 2

C
aC

l 2

C
aC

l 2

S
uc

ci
na

te

MPTP triggered

CyA

Fig. 1. A representative model for estimating calcium-loading capacity in
isolated brain mitochondria. Mitochondrial calcium (black line traces) and
oxygen consumption (gray line trace) were recorded simultaneously using a
Clark-type oxygen electrode equipped with a CaCl2-selective electrode. The
calcium electrode measures extramitochondrial calcium as an electric potential
between the assay media and the electrode filling solution, which contains 10
mM CaCl2. In 1 ml of respiration buffer at 25°C, 0.5 mg mitochondria,
rotenone (2 mM, dissolved in ethanol), and oligomycin (1 mg/ml, dissolved in
ethanol) were added. Once a steady-state reading was established, sequential
additions of CaCl2 were made to calibrate the calcium electrode (20 �M, 20
�M, 40 �M, 80 �M, and 100 �M, total 260 �M). Additions of CaCl2 are
observed as a decrease in potential at the calcium electrode. When the
mitochondria are energized (i.e., succinate addition), the calcium is seques-
tered in the mitochondria, which decreases the extramitochondrial CaCl2
concentration, and is measured as an increase in electrical potential by the
electrode. Calcium-loading capacity was estimated as the maximum amount of
CaCl2 sequestered by mitochondria before CaCl2 loading halted (i.e., the
mitochondrial permeability transition pore (MPTP) was triggered, indicated by
thick, black line). Assay was repeated with the addition of 1 �M cyclosporin
A (CyA, a specific inhibitor of MPTP) to confirm opening of MPTP through
the blockage of CaCl2 release back into the medium (indicated by thin, black
line).
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TGGTTGGAGT-3=) and B2M (F: 5=-ATACCCGGCACCCGGCT-
GAG-3=; R:5=-AGAGAGGTCCGACTGCTCGACT-3=).

Target-specific standards for quantitative PCR (qPCR) were made
by performing standard PCR reactions for each primer set using
Amplitaq gold 360 hot start PCR master mix (Applied Biosystems,
Foster City, CA). The PCR products were then purified using
QIAquick PCR purification kit (no. 28104; Qiagen) and quantified by
measuring the absorbance at 260 nm with a Nanodrop ND1000.
Quantitative PCR was performed with the individual mitochon-
drial and nuclear primers on the RotorGene3000 (Qiagen) using
qEvaGreen master mix (qARTA Bio, Carson, CA), in accordance
with the procedure of Lutfalla and Uze (68). Each sample was run in
duplicate along with a 5-point, 10-fold serial dilution of target specific
standard. Crossing threshold values were derived following the pro-
cedures of Hampton et al. (44), and copy numbers of target-specific
sample DNA were calculated using each target-specific standard
curve. These values were used to calculate the ratio of ND1:B2M, or
mitochondrial to nuclear DNA.

Data analysis. Statistical analyses were accomplished using JMP
Pro 12 statistical software. Significant differences in seasonal respi-
ration rates, calcium loading capacity, and mtDNA copy number
between hibernating and spring samples were analyzed using one-way
ANOVA and were considered significant at P � 0.05. Significant
results from ANOVA tests were further analyzed using a Tukey’s
honestly significant difference (HSD) test to find means that were
significantly different from each other (P � 0.05). P values presented
in the results section are Tukey’s HSD values. All data presented are
means 	 SE.

The relationships between respiration and membrane potential
were graphed and compared between hibernating and spring groups,
as described previously (5, 41). The maximal membrane potential and
nonphosphorylating respiration rates were compared between hiber-
nating and spring-active animals by a one-way ANOVA, and kinetic
curves were compared by the overlap of standard error bars; the
existence of no overlap was interpreted as a significant difference
between curves (8, 14, 34, 41, 52).

RESULTS

Seasonal respiration rates. At complex I fueled with G/M,
state 3 respiration rates were more than threefold higher in IBA

animals compared with SP animals, when measured at 25°C
(one-way ANOVA, P � 0.05; Fig. 2). This same trend is also
seen with complexes II–IV, where state 3 respiration rates with
SUC and G3P have higher rates in TOR and IBA compared
with SP, but these results were not significant [P � 0.0542
(SUC), P � 0.0726 (G3P)]. The rather small extent of G3P-
dependent respiration indicates a low capacity of the G3P
dehydrogenase in brain mitochondria, regardless of season.
State 4 respiration rates (nmol O2 mg
1·protein·min
1) using
G/M for SP, TOR, and IBA were 9.14 	 1.51, 21.38 	 4.91,
and 23.69 	 3.65, respectively. Additionally, RCRs, used as an
indicator of mitochondrial quality, were calculated using G/M
as a substrate. The RCRs for SP, TOR, and IBA were 2.81 	
0.35, 2.44 	 0.38, and 3.13 	 0.43, respectively. These values are
comparable to RCRs of previous brain mitochondria studies
(e.g., Ref. 6) and indicate well-coupled mitochondria.

Proton leak kinetics. Proton leak kinetics were determined at
25°C for SP, TOR, and IBA, and are summarized in Fig. 3.
Proton leak kinetic curves for TOR and IBA were shifted down
and to the right when compared with SP animals (Fig. 3).
Maximal nonphosphorylating respiration rates (uppermost
point in curves) did not differ significantly between spring and
hibernating states, but the maximum membrane potential was
significantly lower in SP (Fig. 3). Specifically, there was a
significant increase in maximum ��m in TOR and IBA com-
pared with SP (one-way ANOVA, P � 0.001). There were,
however, no significant differences in maximal state 4 respi-
ration rates, further supporting the state 3 and RCR data from
respiration experiments. Additionally, there was a significant
decrease in ��m in TOR and IBA compared with SP after the
first addition of malonate (the second furthest points to the
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right in Fig. 3; one-way ANOVA, P � 0.05), further demon-
strating the mitochondrial differences in the brain between
hibernation and spring.

The highest ��m shared between SP, TOR, and IBA was
~195 mV, where proton leak is higher in SP than TOR/IBA
(Fig. 3). In addition, SP had an overall higher proton leak
compared with TOR and IBA and would be considered differ-
ent by the criterion of nonoverlapping error bars and when
comparing the fit of the two curves. This suggests that proton
permeability of the mitochondrial membrane is higher in SP
compared with hibernation.

Calcium loading capacity. A second parameter that we used
to assess proton permeability and mitochondrial integrity was
calcium-loading capacity (114). Because calcium plays impor-
tant and dynamic roles in mitochondria (reviewed in Ref. 94),
we investigated the seasonal differences in calcium uptake in
brain mitochondria to gain a better understanding of how
energy use and production differs between seasons. Isolated
brain mitochondria of thirteen-lined ground squirrels were able
to load significantly more calcium during SP compared with
TOR and IBA (one-way ANOVA, P � 0.0013; Fig. 4). In the
presence of cyclosporin A, mitochondria accumulated and
retained all of the added CaCl2 (see MATERIALS AND METHODS for
details).

mtDNA copy number. To analyze brain mitochondrial
abundance between spring and hibernation, we determined
the ratio of copy number in a mitochondrial gene (ND1) vs.
a nuclear gene (B2M) in frozen cerebral cortex samples. No
significant differences were observed in DNA copies be-
tween SP and IBA (t-test, P � 0.141, data not shown).
However, a trend shows that SP animals had a lower mtDNA
copy number ratio compared with IBA (SP � 483.27 	 39.35
copies; IBA � 639.07 	 89.11 copies).

DISCUSSION

The brain is an important tissue that contributes roughly 5%
to the overall energetic needs and metabolism of rodents (50),

including the thirteen-lined ground squirrel. Unlike other tis-
sues, where metabolism is suppressed during torpor (reviewed
in Ref. 101), maintenance of brain metabolism at some reduced
level is critical because it is, in part, the central regulator of
hibernation (31). This suggests an innate adaptation to main-
tain function in the brain during extreme physiological chal-
lenge (27). Here, we measured several bioenergetic properties
of isolated brain mitochondria from the thirteen-lined ground
squirrel to determine changes associated with seasonal varia-
tion in energy demand. The results of this study suggest that
brain mitochondria during hibernation have increased capacity
for oxidative phosphorylation compared with brain mitochon-
dria during spring. This was evidenced by increases in flux
fueled through complex I of the ETC, decreases in mitochon-
drial proton leak, and decreased calcium loading in hiberna-
tion.

Brain mitochondrial metabolism is not suppressed during
hibernation at 25°C. Brain mitochondria isolated from thir-
teen-lined ground squirrels exhibit both high respiration rates
and low proton leak during torpor and IBA when measured at
25°C, suggesting that brain mitochondrial substrate oxidation
during hibernation is better coupled to ADP phosphorylation.
No differences were found in mitochondrial function between
torpor and IBA at 25°C, indicating that isolated brain mito-
chondria during the entire hibernation season are primed for
rapid and improved ATP production. Using permeabilized
tissues, Gallagher and Staples (39) also saw no change in
mitochondrial function between torpor and IBA in the brain
cortex. This is in contrast to other tissues, such as liver and
skeletal muscle, that show a suppression of mitochondrial
function during torpor when compared with IBA (reviewed in
Ref. 101). A lack of mitochondrial suppression in the brain
during torpor is intuitive since the brain is a major metabolic
tissue that includes regions that signal and regulate important
autonomic functions during hibernation, such as regulating
metabolic rate (31, 98). In fact, high-energy phosphates in the
brains of ground squirrels appear to be higher in torpor than
IBA (47), suggesting that energy is being stored during torpor
for future use during an arousal. Furthermore, the large ATP
requirement for arousal is supported by this study as isolated
brain mitochondria from hibernating animals show enhanced
mitochondrial bioenergetics, such as lower proton leak.

It is important to note that this study only investigated
isolated brain mitochondria at a single temperature (i.e., 25°C)
and with only a subset of fuels. Because the ground squirrel
brain preferentially uses ketones during hibernation (1), spe-
cific substrates, such as fatty acid derivatives, could play a role
in the overall oxidative capacity of brain mitochondria across
the year. For example, with more fatty acids being metabolized
during hibernation, one would hypothesize that proton leak
would be greater during hibernation, contrary to this study’s
findings. Future analyses should look at the effects of different
substrates, namely ketones and fatty acids, on mitochondrial
bioenergetics in the brain. Moreover, temperature has been
shown to effect tissue-specific metabolism of isolated mito-
chondria in hibernators (reviewed in Ref. 101). For example, it
was recently shown that brown adipose tissue mitochondrial
respiration was enhanced at 25°C during hibernation compared
with spring, but this capacity was decreased at lower temper-
atures [e.g., temperature coefficients (Q10) effect was present]
(4). Thus, measuring mitochondrial bioenergetics at one tem-
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Fig. 4. Calcium-loading capacity of brain mitochondria. Assessment of cal-
cium loading capacity was performed on isolated brain mitochondria from
thirteen-lined ground squirrels. Briefly, CaCl2 (260 �M) was titrated into the
chamber upon the addition of succinate (10 mM) to stimulate approximately
state 4 respiration (see MATERIALS AND METHODS for details). The estimation of
calcium-loading capacity was determined after calcium loading halted in the
mitochondrial suspension. SP, n � 6; TOR, n � 7; IBA, n � 6. **P � 0.01,
Tukey’s HSD.
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perature in this study limits the interpretation of our results.
However, 25°C is the temperature experienced midarousal,
representing the point during arousal when brain mitochondria
would presumably be at the most risk of damage and, thus,
would need to work as effectively as possible. Therefore, we
believe seasonal differences seen at 25°C are important differ-
ences that speak to the nature of the hibernation biology in the
brain.

Calcium regulation plays a significant role in mitochondrial
metabolism. Mitochondrial calcium uptake is essential for
mitochondrial function, including ATP production and various
cellular signaling processes (30, 42, 87, 104; reviewed in Ref.
94). The direct uptake of calcium into the mitochondrial matrix
via the mitochondrial calcium uniporter uses the proton gradi-
ent (73, 77, 82) and directly competes with mitochondrial ATP
synthesis (78, 79). In fact, it has been shown that a high rate of
Ca2� uptake lowers the proton-motive force sufficiently to
cause a transient reversal of the ATP synthase (9). Moreover,
endogenous ATP is hydrolyzed to support accumulation of
calcium into mitochondria (9). Because calcium uptake takes
precedence over ADP phosphorylation in competition for the
energy of respiration (91), the lack of calcium transport by
mitochondria would potentially be an energy-producing pro-
cess of physiological significance—a process necessary for
hibernation.

During hibernation, brain mitochondria sequester signifi-
cantly less calcium into the mitochondrial matrix compared
with mitochondria during spring (Fig. 4), as indicated by the
low-calcium loading capacity in hibernation. The reduced
uptake and storage of calcium in the mitochondrial matrix
during hibernation allows for a shift in utilization of the proton
circuit, primarily for the essential ATP production needed for
arousal from torpor to IBA. Indeed, it has recently been shown
that neurons in hibernating Daurian ground squirrels (Spermo-
philus dauricus) are able to maintain lower levels of intracel-
lular calcium concentrations compared with rats and, thus, are
better at maintaining calcium homeostasis (113). Additionally,
both Arctic ground squirrels and golden hamsters show down-
regulation of N-methyl-D-aspartate receptor function during
hibernation (90, 112), blunting calcium responses, such as
mitochondria-dependent apoptosis (60, 64). Finally, the disas-
sembly of synapses occurring with each torpor bout in thirteen-
lined ground squirrels is likely to complement the overall
downregulation of ion channels to reduce the potential for
calcium buildup at cold body temperatures and detrimental
excitotoxicity (27, 48).

In addition to the supporting functional data presented here,
transcriptomic and proteomic supporting data from thirteen-
lined ground squirrel brain regarding calcium uptake are avail-
able. Schwartz et al. (96) saw significant increases in two genes
related to calcium-binding (SLC24A2 and S100A6) during
hibernation in the cerebral cortex compared with spring. These
two genes may play significant roles in binding and regulating
calcium levels in the brain. Additionally, Hindle and Martin
(48) showed sorcin protein, SRI (soluble resistance-related
calcium binding protein), to be in low abundance at cold
temperatures (i.e., torpor) in the forebrain of the thirteen-lined
ground squirrel. SRI may be implicated in calcium homeostasis
by regulating intracellular calcium handling during torpor (48).
Taken together, future studies should characterize calcium
dynamics and the role it plays in mitochondrial function of

hibernators. Specifically, dissecting both the torpor and IBA
bouts at different temperatures may shed light onto how cal-
cium regulates ATP demand, and how this compares to the
active season.

Enhanced production of ATP aids in arousal. The various
functional data accumulated in this experiment (e.g., high
respiration rates, lower proton leak, and less calcium uptake)
suggest that an improved production of ATP is occurring
during hibernation, which is necessary for the energetically
demanding arousals from torpor throughout hibernation. In
support of these functional observations, Epperson et al.
(36) identified upregulation of numerous mitochondrial pro-
teins in the thirteen-lined ground squirrel brain stem during
hibernation, also suggesting rapid ATP production upon
arousal from torpor. Additionally, they also found a higher
expression of mitochondrial membrane proteins (NDUFS1,
NDUFS3, NDUFV2, UQCRC1, UQCRH, ATP5A1, ATP5B, and
VDAC2) in early torpor (i.e., torpor occurring right after IBA) in
the brain stem of thirteen-lined ground squirrels (36). Epperson et
al. (36) found higher winter copy number of proteins in oxida-
tive phosphorylation (such as complex I of the ETC), which
allows brain mitochondria to rapidly and effectively produce
ATP for arousal.

High respiration rates and less proton leak observed in brain
mitochondria during hibernation promote the risk of producing
reactive oxygen species (ROS). Mitochondria produce super-
oxide as a by-product of oxidative metabolism, and are a major
source of intracellular ROS production (7, 11, 76). Because
superoxide production is dependent on the proton-motive force
(56, 59, 65), proton leak pathways may exist to mitigate the
proton gradient and overall minimize oxidative damage (10,
29). Although this study did not directly measure the produc-
tion of ROS from isolated mitochondria, one can predict that
an enhanced function of brain mitochondria during hibernation
produces ROS more readily than in the spring, and, thus, poses
the risk for oxidative damage. However, it has been docu-
mented that hibernators have a suite of neuroprotective mech-
anisms in the brain during hibernation to minimize oxidative
damage from ROS. For example, the synaptic dissociation that
occurs during hibernation may serve a neuroprotective purpose
(96). Recent Illumina HiSeq sequencing of the cerebral cortex
transcriptome indicates that the brain upregulates transcripts
important for plasticity and remodeling before hibernation
onset (96). Additionally, mammalian hibernators exhibit a
striking ability to tolerate oxidative stress during hibernation
by eliminating free radicals generated during repeated cycles of
torpor and arousal (102). It is known that hibernating ground
squirrels and bats have antioxidant defense systems against
oxidative stress (21, 27, 31–33, 80, 103, 109), and the amounts
of antioxidant proteins vary among different stages of torpor-
arousal cycles (21, 35, 61, 74, 107). In addition, melatonin
receptor-mediated mechanisms have been shown to aid in
mitochondrial performance of thirteen-lined ground squirrel
brain during arousal from torpor (95). Specifically, inhibition
of melatonin receptor signaling reduced state 3 respiration rates
in brain mitochondria, thus, suggesting melatonin aids in the
mitochondrial performance of rapid production of ATP during
arousal (95). It is possible that melatonin production upon
arousal from torpor functions to help brain mitochondria work
more effectively during a period of extreme energy need (95).
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Perspectives and Significance

This study provides additional insight into the overall met-
abolic system of the thirteen-lined ground squirrel. Moreover,
it aids in the understanding of tissue-specific mitochondrial
metabolism, which, until this study, very little investigation
had been done on brain mitochondrial metabolism in hiberna-
tors. Similar to brown adipose tissue mitochondria (4), brain
mitochondria exhibit an enhanced oxidative capacity during
hibernation. Although the focus of this study was on seasonal
changes of mitochondrial bioenergetics with one temperature
and a few substrates, future studies should aim to understand
the effects of temperature and fatty acid oxidation on the
oxidative capacity of brain mitochondria across the year. Fur-
thermore, future studies should focus on measuring mitochon-
drial bioenergetics in separate regions of the brain, which may
aid in a better understanding of how different regions of a
hibernator’s brain adapt to the extreme physiological condi-
tions associated with the hibernation phenotype. Finally, it was
recently proposed that the ground squirrel brain contains neu-
ronal uncoupling protein 1 (UCP1) to aid in local thermogen-
esis (60). Although we did not measure uncoupling rates of
respiration with the use of fatty acid derivatives, our study does
not support the presence of functional UCP1, as we see no
evidence of the uncoupling associated with this protein. In fact,
our data show that brain mitochondria are more tightly coupled
in hibernation when compared with spring and that only basal
proton leak was observed throughout hibernation in brain
mitochondria. Although we hypothesize that there is no func-
tionally active UCP1 in the brain, future studies should test this
hypothesis with the additions of free fatty acids and GDP to
detect UCP1-dependent proton leak.
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